If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5z^2-10z+24=0
a = -5; b = -10; c = +24;
Δ = b2-4ac
Δ = -102-4·(-5)·24
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{145}}{2*-5}=\frac{10-2\sqrt{145}}{-10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{145}}{2*-5}=\frac{10+2\sqrt{145}}{-10} $
| (x^2)+x+8=3x+21 | | K=15t^2+64t+360 | | -1.5=-r | | (0.04+x)/x=1.22 | | -k=-2 | | 0=-4.9t^2+27t+10 | | E(4)=30h | | 5x3-8=12-8 | | ((-9+a)/15)=1 | | -26=-6u+4(u-5) | | 6u-20=8(u-2) | | 3^(4x+6)=81 | | (4x+3)=43 | | -20=d/5 | | 7x3=14 | | 2x+2(3×+4)=112 | | 2x+2(3x4)=112 | | 125=m | | 7v+8=5(v-2) | | -8(u+5)=-2u+8 | | 4(2x+1)=160 | | 2/x-1=3 | | 9x+20=4x-15 | | 2a-8a=(12-8a) | | a+5÷6-a+1÷9=a+3÷4 | | X=1/2(y+4) | | 18x-7=1+14x+7 | | 2x-4/3+7=4 | | 5x−2x−3=13 | | 3+r÷3=21 | | m+55=115 | | -9u+7=-7(u-3) |